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Abstract

Background—Influenza viruses gradually accumulate point mutations, reducing the 

effectiveness of prior immune protection.

Methods—Children aged 9–14 years received 2010–2011 trivalent inactivated influenza vaccine 

(TIV). Vaccination history, hemagglutination-inhibition (HI) titers, and cell-mediated immune 

responses were assessed to investigate the cross-reactivity with past and future influenza virus 

strains.

Results—2010–2011 TIV induced significant T-cell responses and HI titers of ≥160, with a fold-

rise of ≥4 and titers of ≥100 maintained for >7 months in the majority of children. Pre-existing 

memory B cells in these children differentiated quickly to antibody-secreting cells to the new 

vaccine antigens. Children vaccinated in the previous year maintained high HI titers well into 

2010, demonstrating elevated HI titers against A/Perth/16/2009, the future (in 2010–2011) H3N2 

component. Prior vaccination enhanced CD8+ T-cell responses to A/Perth/16/2009. Children 

vaccinated with the prior 2009–2010 seasonal vaccine also demonstrated higher preexisting levels 

of interferon γ–secreting CD4+CD69+ T cells to 2009 pandemic influenza A(H1N1). Children 

previously vaccinated with 2009–2010 seasonal influenza vaccine also showed greater expansion 
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of tumor necrosis factor α–secreting CD8+CD69+ T cells to 2009 pandemic influenza A(H1N1) 

upon vaccination in the 2010–2011 season than those who were not previously vaccinated.

Conclusions—Seasonal influenza viruses continuously drift, which allows them to circumvent 

protective immunity, but conserved epitopes provide immunological cross-reactivity in children 

through either vaccination directly or through prime/boost in the prior influenza season.
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Influenza viruses continuously evolve through antigenic drift and shift. On rare occasions, 

unique strains arise when an influenza strain acquires genetic segments from another strain. 

These antigenically shifted strains are serologically distinct with no cross-protection in the 

human population, resulting in influenza pandemics approximately once every 36 years [1]. 

More commonly, influenza viruses evolve gradually, accumulating point mutations in 

hemagglutinin (HA) antibody-binding sites, enhancing their ability to escape preexisting 

immunity and reinfect previously protected individuals [2].This antigenic drift prompts a 

yearly race to accurately predict next season’s circulating strains and manufacture a 

sufficient quantity of vaccine prior to the influenza season. This occasionally results in 

mismatch between vaccines and circulating strains that have significantly drifted early in the 

influenza season, as occurred during the 2014–2015 influenza season [3]. Despite 

continuous drift, emerging strains maintain some degree of antigenic similarity with their 

immediate predecessors [4, 5], and vaccines usually provide at least partial protection to 

drifted strains [3, 6, 7].

Annual influenza epidemics exert effects worldwide; however, children are 

disproportionately affected. The US Advisory Committee on Immunization Practices 

recommends that all children aged 6 months to 18 years receive influenza vaccine annually 

[8]. Nevertheless, it is estimated only half of American children are vaccinated yearly [9]. 

Despite waning immunity throughout the year, children vaccinated in the prior influenza 

season likely receive some additional benefit in subsequent seasons due to retained antigenic 

similarity. We examined immune responses in children vaccinated with trivalent inactivated 

influenza vaccine (TIV), assessing parameters likely to play a role in protection, including 

development of hemagglutination-inhibition (HI) titers, T-cell and B-cell responses, and 

influences of prior vaccination.

METHODS

Methods are summarized briefly here and in detail in Supplementary Figure 1.

Study Design

Fifty children aged 9–14 years (Table 1) were vaccinated on 9–16 October 2010 with 

unadjuvanted 2010–2011 TIV composed of A/California/07/09 (2009 pandemic influenza 

A[H1N1]; hereafter, A[H1N1]pdm09), A/Perth/16/2009(H3N2) (hereafter, A/Perth/16), and 

B/Brisbane/60/2008 (hereafter, B/Bris/60) strains. Serum was collected at 0 days, 28 days, 

Reber et al. Page 2

J Infect Dis. Author manuscript; available in PMC 2017 December 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



and 7 months after vaccination, and peripheral blood mononuclear cells (PBMCs) were 

collected on day 0 from all subjects and at only 1 time point after vaccination, either 7 days, 

14 days, or 28 days, because of the subjects’ age. One child was unavailable for the 7-month 

serum collection. Informed consent was obtained from subjects, and human experimentation 

guidelines of the Department of Health and Human Services were followed. Procedures, 

informed consent documents, and data collection forms were approved by participating 

institutional review boards.

Serological Assays

HI assays were performed by Focus Diagnostics (Cypress, California) as previously 

described [10]. HI titers were determined against the 2010–2011 vaccine strains 

A(H1N1)pdm09, A/Wisconsin/15/2009(H3N2) (an A/Perth/16-like strain), and B/Bris/60; 

the 2009–2010 vaccine strains A/Brisbane/59/2007(H1N1) (hereafter, A/Bris/59) and A/

Uruguay/716/2007(H3N2) (an A/Brisbane/10/2007-like strain; A/Bris/10); and the 2008–

2009 influenza B vaccine strain, B/Florida/4/2006 (B/Flor/4).

T-Cell Responses

PBMCs were stimulated overnight with live A(H1N1)pdm09 (A/California/08/09) or A/

Perth/16 as previously described [11] or with recombinant HA (rHA; Influenza Reagent 

Resource, Manassas, VA). PBMCs were stained with Live/Dead Stain (Life Technologies, 

Grand Island, New York) and then stained for surface CD56, CD69, CD4, and CD8 and 

intracellular tumor necrosis factor α (TNF-α), interleukin 2, and interferon γ (IFN-γ). T-

cell activation determined within the CD56− population was expressed as CD4+CD69+ or 

CD8+CD69+ cells in total CD4+ or CD8+ T cells. Cytokine-producing cells were expressed 

within total CD4+CD69+ or CD8+CD69+ cells.

Antibody-Secreting Cells (ASCs)

Antigen (Ag)–specific memory B cells were assessed in PBMCs collected 28 days after 

vaccination, and plasmablasts were derived from preexisting memory B cells assessed in 

samples obtained 7 days after vaccination. PBMCs stimulated to induce polyclonal 

activation (Supplementary Figure 1) were added to enzyme-linked immunospot (ELISPOT) 

plates coated with anti-human immunoglobulin G (IgG), immunoglobulin M (IgM; Southern 

Biotech, Birmingham, Alabama), or monovalent influenza vaccines (kindly provided by 

Sanofi Pasteur, Swiftwater, Pennsylvania). Spot-forming units were assessed by 

ImmunoSpot ELISPOT reader (Cellular Technology, Cleve-land, Ohio) and expressed as the 

percentage of Ag-specific IgG-or IgM-secreting B cells out of the total number of IgG- or 

IgM-secreting B cells.

Statistical Analysis

Log2-transformed HI titers were used as dependent variables, summarized as geometric 

mean titers (GMTs). Means and differences in means were estimated using repeated 

measures linear mixed models as previously reported [11]. Model-estimated means yielded 

GMTs and differences between GMTs (28 days and 0 days, 7 months and 0 days, and 7 

months and 28 days) yielded GMT ratios (fold rise). B-cell responses were analyzed as 
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previously reported [11]; percentages were log10 transformed and summarized as geometric 

mean percentages (GMPs) and GMP ratios. T-cell analyses used a generalized linear mixed 

model with binomial error distribution to directly estimate the percentage of responding 

cells. Final results were back-transformed to a linear scale. Analyses were performed using 

SAS software (SAS Institute, Cary, North Carolina). Children grouped by prior vaccination 

(both seasonal and monovalent A[H1N1]pdm09 vaccines) were assessed for effects of prior 

vaccination on 2010–2011 TIV responses. For this analysis, post-vaccination T-cell 

responses (on days 7, 14, and 28) were grouped and differences in cellular responses and HI 

titers determined using unpaired t tests. The Fisher exact test was used to compare the 

proportions of children reaching HI titers of ≥40, 80, and 160.

RESULTS

Serological Responses

Children had increased HI titers to all 2010–2011 TIV strains (Figure 1), with the majority 

achieving a fold-rise of ≥4 (Table 2). Titers declined over 7 months but remained well above 

prevaccination levels (Figure 1). Vaccination also induced a fold-rise of ≥4 to the previous 

year’s A(H3N2) strain in 68% of children (Table 2).

HI titers of ≥32 or ≥40 are considered to reduce risk of influenza virus infection by 50% in 

young, healthy adults [12, 13]; however, recent studies conflict as to what level is applicable 

to children. Studies by Ng et al confirmed the use of 40 [14], while Black et al suggest that a 

50% reduction is associated with HI titers of >100 [15]. We therefore examined HI titers of 

≥40, 80, and 160 (Table 2). Before vaccination, 58% of children had HI titers of <40 to A/

Bris/59, the previous year’s A(H1N1) component (Table 2). In contrast, 68% exhibited 

preexisting HI titers of ≥40 to A(H1N1)pdm09, potentially through prior natural infection. 

2010–2011 TIV increased A(H1N1)pdm09 titers, with >95% achieving HI titers of ≥40 and 

titers remaining >40 beyond 7 months; 86% achieved titers of ≥160, with titers in 67.3% 

remaining >160 for 7 months (Table 2).

Prior to vaccination in 2010, 64% of children had HI titers of ≥40 to A/Bris/10, the 2009–

2010 A(H3N2) vaccine component, and 30% had preexisting titers of ≥40 to A/Perth/16, the 

2010–2011 A(H3N2) component (Table 2). 2010–2011 TIV induced HI titers to both 

strains; 66% and 84% achieved HI titers of ≥160 to A/Perth/16 and A/Bris/10, respectively, 

and maintained these elevated levels beyond 7 months.

The 2010–2011 TIV B component, B/Bris/60, was retained from the previous year. Half of 

subjects had preexisting HI titers of ≥40 and similar titers to B/Flor/4, the B strain from 2 

years prior (Table 2 and Figure 1). 2010–2011 TIV increased HI titers to both strains (Table 

2).

T-Cell Responses

Increased percentages of activated (CD69+) T cells were detectable at most time points after 

vaccination without in vitro stimulation but were not statistically significant with the 

exception of IFN-γ–secreting CD4+CD69+ cells 7 days after vaccination (Supplementary 

Figure 2; P ≤ .05). Activated CD4+ T cells (CD4+CD69+) responded to live-virus 
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stimulation primarily with IFN-γ production, while activated CD8+ T cells (CD8+CD69+) 

responded primarily with TNF-α secretion. Increased IFN-γ–secreting CD4+CD69+ cells 

were observed 14 days after vaccination after live A(H1N1)pdm09 stimulation (P ≤ .05) and 

14 days (P ≤ .05) and 28 days (P ≤ .01) after vaccination against live A/Perth/16 (Figure 2). 

A/Perth/16 also stimulated TNF-α production 14 days after vaccination (P ≤ .05). Increased 

TNF-α–secreting CD8+CD69+ cells were observed 14 days (P ≤ .01) and 28 days (P ≤ .01) 

after vaccination to A(H1N1)pdm09. T-cell responses primarily target internal viral proteins, 

but it has been proposed that CD4 HA epitopes may be the most important for antibody 

generation [16, 17]. Stimulation with rHA revealed responses similar to live-virus 

stimulation, but responses were generally lower with slightly different kinetics 

(Supplementary Figure 3).

B-Cell Responses

Ag-specific plasmablasts (ASCs) derived from the memory B-cell pool peak in peripheral 

blood 7 days after vaccination [18, 19]. IgG- and IgM-producing plasmablasts were assessed 

using 0 days and 7 days PBMCs (Figure 3). Responses were variable, but most individuals 

responded positively to each vaccine component, with greater responses in IgG+ ASCs. 

Consistent with 0 days HI titers (Table 2), preexisting A(H1N1)pdm09- and A/Perth/16-

specific ASCs were detected for IgG and IgM. Fold-rise (GMP ratio) in Ag-specific 

plasmablasts was significant in all parameters, with highest fold-rise in A(H1N1)pdm09-

specific ASCs (IgG and IgM producing), consistent with the highest GMT ratio in HI titers 

(28 days to 0 days; Figure 1).

Vaccination-induced memory B-cell frequency was assessed using PBMCs collected at 0 

and 28 days (Figure 3). Comparable levels of IgG- and IgM-producing memory B cells 

specific to all vaccine components were induced by vaccination. While memory B cells were 

induced to all vaccine components, the greatest induction (GMP ratio for 28 days to 0 days) 

was detected in IgM-producing A(H1N1)pdm09-specific memory B cells (Figure 3).

Effect of Prior Vaccination on Immune Responses

Thirty-eight percent of children in this study received live-attenuated vaccine (LAIV; 10%; 

Table 1) or unadjuvanted TIV (28%; Table 1) during the previous influenza season, and 32% 

received monovalent A(H1N1)pdm09 vaccine (Table 1); 47.4% of children receiving 2009–

2010 seasonal vaccine also received A(H1N1)pdm09 vaccine. Children vaccinated with 

2009–2010 seasonal vaccine maintained higher HI titers prior to vaccination in 2010 (Table 

2). Prior vaccinees did not have higher HI titers to the serologically distinct A(H1N1)pdm09 

strain but had higher preexisting HI titers to the 2010–2011 A(H3N2) strain, A/Perth/16 (P 
≤ .001; Figure 4). Subjects vaccinated with monovalent A(H1N1)pdm09 vaccine exhibited 

HI titers to A(H1N1)pdm09 similar to those exhibited by unvaccinated individuals (Figure 

4). Of note, subjects receiving 2009–2010 seasonal vaccine elicited slightly lower HI titers 

to B/Bris/60 upon vaccination with the same strain during the 2010–2011 season (P ≤ .05; 

Figure 4), although 84.2% still reached HI titers of ≥80 (Table 2).

Interestingly, children receiving 2009–2010 seasonal influenza vaccine exhibited higher 

frequencies of preexisting IFN-γ–secreting CD4+CD69+ cells (P ≤ .05) after stimulation 
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with A(H1N1)pdm09, while the increase in the frequency of TNF-α–secreting CD8+CD69+ 

cells (P = .07) did not reach significance (Figure 5). These responses further increased upon 

receipt of 2010–2011 TIV, although only TNF-α–secreting CD8+CD69+ cells reached 

significance as compared to previously unvaccinated subjects (P ≤ .05). Frequencies of TNF-

α–secreting CD4+CD69+ and IFN-γ–secreting CD8+CD69+ cells showed no differences 

between previously vaccinated and unvaccinated individuals (data not shown). Prior seasonal 

vaccinees (2009–2010) also developed better A/Perth/16-specific TNF-α–secreting 

CD8+CD69+ responses after vaccination with 2010–2011 TIV (P ≤ .05). Subjects receiving 

monovalent A(H1N1)pdm09 vaccine did not exhibit similarly high T-cell responses.

DISCUSSION

Influenza epidemics disproportionately affect children. Nevertheless, challenges associated 

with performing clinical trials in children have limited our understanding of immunity to 

influenza virus in this at-risk population. This study constitutes one of the most 

comprehensive assessments of immunity to seasonal influenza vaccination in children. Our 

results demonstrate the broader influence of annual vaccination, which affects more than a 

single influenza season, and provide insight for future protection studies and vaccine 

development for children.

Recent studies suggest that children may require HI titers greater than the traditional titer of 

40—possibly >100—to achieve a 50% reduction in clinical influenza [15]. Children in our 

study mounted significant serological and cell-mediated responses after immunization with 

2010–2011 TIV. While high HI titers are important for effective protection, sustaining 

prolonged, elevated levels is essential. The majority of children demonstrated HI titers of 

≥160, maintaining titers near or greater than 100 for >7 months (Figure 1 and Table 2). 

2010–2011 TIV also generated significant IFN-γ–producing CD4+CD69+ cells responsive 

to A(H1N1)pdm09 and A/Perth/16 (Figure 2). Studies suggest that IFN-γ–producing cells 

correlate well with protection in young children [20].

Children exhibited moderately elevated HI titers prior to 2010–2011 vaccination. Elevated 

A(H3N2)- and B-specific titers are consistent with prior vaccination (discussed below). 

However, A(H1N1)pdm09 is serologically distinct from A/Bris/59, the prior A(H1N1) 

component, yet 68% had A(H1N1)pdm09 HI titers of ≥40 prior to vaccination (Table 2). As 

neither seasonal nor monovalent A(H1N1)pdm09 vaccinees had significant serological 

differences from unvaccinated individuals, this likely reflects prior infection (Figure 4). 

Studies examining longitudinal immunogenicity demonstrated rapid decline in HI titers 

invoked by A(H1N1)pdm09 vaccine [21, 22]. In contrast to monovalent A(H1N1)pdm09 

vaccine, 67.3% of children vaccinated with 2010–2011 TIV maintained A(H1N1)pdm09 HI 

titers of ≥160 for >7 months (Table 2). Differences in longevity could be explained as a 

booster effect, with children maintaining higher HI titers over a longer period because of a 

secondary response stimulated by primary exposure to monovalent A(H1N1)pdm09 vaccine 

and/or natural infection. Alternatively, enhanced T-cell responses induced by 2010–2011 

TIV may have aided in the longevity of the response (Figure 2 and Supplementary Figure 3).
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Plasmablast responses at 7 days are indicative of an accelerated secondary response [18, 19]. 

Although subjects were relatively young, their robust IgG- and IgM-producing ASC 

formation at 7 days suggest development from an already established memory B-cell pool, 

readily differentiating to plasmablasts in response to strains in the new seasonal vaccine. 

IgG-producing plasmablasts were predominant, but significant IgM-producing plasmablasts 

were produced, albeit at reduced levels to IgG. Additionally, induction of long-lived IgM 

memory B cells was comparable to IgG counterparts (Figure 3). Although studies show that 

IgM memory B cells participate in secondary responses to bacterial or inert Ag primarily by 

entering germinal centers, rather than by directly secreting antibodies [23–27], their role in 

repeated influenza vaccine responses remains unknown. Considering that secondary 

antibody responses are typically dominated by highly specific IgG and little, if any, IgM, our 

current findings may indicate a continual maturation of the B-cell compartment in this age 

group. Studies examining plasmablast responses in adults who received A(H1N1)pdm09 

vaccine showed a predominance of IgG-over IgM-producing plasmablasts in adults [18].

Influenza vaccination of children resulted in broader immunity than to strains included in the 

vaccine and influenced responses the following year. Children receiving 2009–2010 seasonal 

vaccine maintained high HI titers into 2010 and stimulated responses to strains not present in 

the vaccine (Figure 4 and Table 2). Children vaccinated with A/Bris/10, the 2009–2010 

A(H3N2) vaccine component, demonstrated elevated A/Perth/16 HI titers, the future (2010–

2011) A(H3N2) component, prior to vaccination in 2010 (Table 2). Conversely, vaccination 

with 2010–2011 TIV boosted HI titers to all 2009–2010 components. B/Bris/60, an 

influenza B Victoria lineage strain, also boosted HI titers to B/Flor/4, a Yamagata lineage 

strain from the 2008–2009 season (Figure 1). Studies in adults vaccinated during the 2006–

2007 influenza season demonstrated the induction of cross-reactive antibodies to drifted 

influenza virus strains that emerged the following year [28]. Those studies further showed 

that adults were less able to induce cross-reactive antibodies with increasing age.

Relatively few studies have examined cross-protection against drifted seasonal influenza 

virus in children, which is afforded by TIV. Vesikari et al [29, 30] addressed cross-reactive 

HI titers in children vaccinated with MF59-adjuvanted versus unadjuvanted influenza 

vaccines. Children in those studies receiving 2 doses of unadjuvanted vaccine exhibited 

variable cross-reactivity, with moderate cross-reactivity to drifted A(H3N2) strains and little 

to none with B strains (also mismatches between Yamagata and Victoria lineages). Our 

study demonstrated much higher cross-reactivity to drifted strains, especially the B strain; 

however, our study was performed in older children, who respond better to vaccination. 

Vesikari et al examined children ages 6–72 months [30] and 6–35 months [29].

Influenza virus continuously evolves through antigenic drift, the gradual accumulation of 

point mutations allowing it to reinfect previously protected hosts [2]. However, this gradual 

evolution retains enough conserved epitopes with the previous strain to provide at least 

partial protection. Recent studies on human antibody responses against A(H3N2) strains 

showed substantially increased HI titers against historic strains, depending on antigenic 

distance from the infecting virus, an effect termed “back-boost” [5]. Boosting of related 

strains observed in our study, while consistent with cross-reactive epitopes, may also be 

explained by the back-boost effect.
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Preexisting T-cell responses to A(H1N1)pdm09, presumably derived from cross-reactive 

epitopes from prior seasonal infection or vaccination, have been demonstrated in humans 

[16,31]. Children in our study who received 2009–2010 seasonal influenza vaccine exhibited 

higher frequencies of preexisting T cells to A(H1N1)pdm09 (Figure 5). Similarly, adults 

vaccinated with 2007–2008 seasonal influenza exhibited enhanced IFN-γ–producing cells to 

A(H1N1)pdm09 according to ELISPOT analysis [32]. Although subjects receiving 

monovalent A(H1N1)pdm09 vaccine exhibited T-cell responses to A(H1N1)pdm09, the 

level was similar to that in unvaccinated individuals (Figure 5). In a similar study, children 

vaccinated with ASO3-adjuvanted monovalent A(H1N1)pdm09 vaccine demonstrated 

higher frequencies of IFN-γ–producing cells according to ELISPOT, which persisted into 

the 2010–2011 season; those vaccinated with unadjuvanted whole-virion vaccine 

demonstrated a much lower level of IFN-γ–producing cells [33]. Similar to our results, 

vaccination with 2010–2011 seasonal vaccine further expanded T-cell responses to levels 

higher than those in subjects who were not previously vaccinated (Figure 5). While the 

studies performed in adults vaccinated with 2007–2008 seasonal vaccine were performed 

prior to A(H1N1)pdm09 circulation [32], our results cannot definitively attribute preexisting 

CD4+ and CD8+ cellular responses solely to prior 2009–2010 vaccination; our results 

suggest prior pandemic infection and therefore the possibility of a prime-boost effect from 

seasonal vaccine followed by pandemic infection (Table 2, Figure 1). However, only subjects 

receiving prior seasonal vaccination exhibited these enhanced T-cell responses to pandemic 

virus, demonstrating the major role of prior seasonal vaccination in this effect.

The effect of prior vaccination was analyzed by grouping all previously vaccinated subjects 

regardless of receiving TIV or LAIV. Vaccine type exerts differential effects on immune 

responses. LAIV stimulates higher T-cell responses in young children, compared with TIV 

[34, 35]. The 2 types of vaccines also influence responses in different lymphoid tissues and 

stimulate different antibody repertoires, as well as promote differential T- and B-cell 

phenotypes [36, 37]. Although the type of vaccine received the previous year potentially 

influenced responses in the subsequent influenza season, sample size precluded further 

subdividing this group to examine such interactions.

Our study has several limitations. The young age of subjects limited blood sample volumes, 

restricting the number of analyses that could be performed, especially T- and B-cell 

analyses. PBMCs were collected on different days after vaccination, to accommodate critical 

time points for plasmablasts, memory B cells, and T cells. While subdividing our cohort into 

different sample days allowed a more comprehensive evaluation, it reduced statistical power. 

Our cohort also had limited racial diversity and was slightly skewed toward males (Table 1).

Children in this study exhibited serological and cell-mediated immunity broader than 

components present in that year’s vaccine. Vaccination boosted serological responses to 

strains experienced not only in the past, likely through cross-reactivity and/or the back-boost 

effect, but also against strains that would circulate in the subsequent season. Although 

vaccination of subjects who had not received the previous year’s seasonal vaccine induced 

HI titers comparable to subjects who received prior vaccination, subjects who were 

previously vaccinated were likely afforded some level of preexisting protection prior to 

receipt of the vaccine in the following year. In contrast to serological responses, children 
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receiving prior seasonal vaccination appeared to have enhanced T-cell responses upon 

vaccination in the subsequent year. The increased breadth of immunity to future strains is 

likely important for children who do not consistently receive annual influenza vaccination 

and in years when vaccine delivery is delayed or the influenza season gets off to an early 

start. Prior seasonal vaccination also stimulated IFN-γ– and TNF-α–producing T cells 

responsive to serologically distinct A(H1N1)pdm09. Whether these cross-reactive cells are 

the result of vaccination with prior seasonal vaccine alone or due to a prime-boost effect 

from vaccination followed by infection is uncertain. Nevertheless, the ability of seasonal 

vaccines to induce cross-reactive HI titers and T cells against future strains stresses the 

importance of yearly vaccination and warrants further investigation.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Hemagglutination-inhibition (HI) titers of children vaccinated with 2010–2011 trivalent 

inactivated influenza vaccine (TIV). HI titers to influenza virus strains included in the 2010–

2011 TIV (2009 pandemic influenza A[H1N1] virus [A{H1N1}pdm09], A/Perth/16, and B/

Bris/60), the 2009–2010 TIV (A/Bris/59, A/Bris10, and B/Bris/60), and the 2008–2009 TIV 

(B/Flor/4) were assessed at 0 days, 28 days, and 7 months after vaccination. Geometric 

mean titer (GMT) ratios (fold rise) were calculated using repeated measures linear mixed 

models for 28 days vs 0 days, 7 months vs 0 days, and 7 months vs 28 days. A GMT ratio of 
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>1 (line) is indicative of a higher postvaccination response. Error bars represent 1 standard 

error. *P ≤ .05, **P ≤ .01, and †P ≤ .001.
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Figure 2. 
T-cell responses to live-virus stimulation. Cytokine production by activated (CD69+) T cells 

induced by live-virus stimulation were assessed prior to (0 days) and either 7, 14, or 28 days 

after vaccination with 2010–2011 trivalent inactivated influenza vaccine. Geometric mean 

percentage (GMP) ratios vs 0 days were calculated for each time point after vaccination, 

using repeated measures linear mixed models. A GMP ratio of >1 (line) is indicative of a 

higher postvaccination response. T-cell activation is expressed as CD4+CD69+ or 

CD8+CD69+ cells in total CD4+ or CD8+ T cells. Cytokine-producing cells are expressed as 

percentages of total CD4+CD69+ or CD8+CD69+ T cells. Error bars represent 1 standard 

error. *P ≤ .05 and **P ≤ .01.
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Figure 3. 
Plasmablast and memory B-cell responses. Immunoglobulin M (IgM)– and immunoglobulin 

G (IgG)–producing plasmablasts and memory B cells specific for 2009 pandemic influenza 

A(H1N1) virus (A[H1N1]pdm09) (H1), A/Victoria/2009 (H3), and B/Bris/60 (B) were 

assessed in children before and after vaccination with 2010–2011 trivalent inactivated 

influenza vaccine. Geometric mean ratio and geometric mean percentage (GMP) ratio vs 0 

days were calculated against the postvaccination time points, using repeated measures linear 

mixed models. A ratio of >1 (line) is indicative of a higher postvaccination response. Error 

bars represent 1 standard error. *P ≤ .05, **P ≤ .01, and ***P ≤ .001.
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Figure 4. 
The effect of prior seasonal vaccination on hemagglutination-inhibition (HI) responses. 

Induction of HI titers by 2010–2011 trivalent inactivated influenza virus (TIV) was assessed 

in subjects who received prior influenza vaccination during the 2009–2010 influenza season 

(V) and those who did not (UV). Vaccination with prior seasonal influenza vaccine and 

monovalent 2009 pandemic influenza A(H1N1) virus (A[H1N1]pdm09) vaccine were 

assessed separately. HI titers to influenza virus strains included in the 2010–2011 TIV 

(A[H1N1]pdm09, A/Perth/16, and B/Bris/60), the 2009–2010 TIV (A/Bris/59, A/Bris10, 

and B/Bris/60), and the 2008–2009 TIV (B/Flor/4) were assessed at 0 days, 28 days, and 1 

year after vaccination. Differences between previously vaccinated and unvaccinated subjects 
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were determined using unpaired t tests. Error bars represent 1 standard error. Significance is 

indicated by *P ≤ .05 and ***P ≤ .001.
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Figure 5. 
Effect of prior vaccination on T-cell responses. The percentage of interferon γ–secreting 

CD4+CD69+ and TNF-α–secreting CD8+CD69+ cells responding to stimulation with live 

2009 pandemic influenza A(H1N1) virus (A[H1N1]pdm09) or A/Perth/16 virus were 

determined in subjects vaccinated (V) with seasonal influenza vaccine or the monovalent 

A(H1N1)pdm09 vaccine during the 2009–2010 influenza season as compared to subjects 

who were not vaccinated (UV) with these respective vaccines. Differences between 

previously vaccinated and unvaccinated subjects were determined using unpaired t tests. 

Error bars represent 1 standard error. *P ≤ .05.
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Table 1

Subject Characteristics, by Postvaccination Time of Peripheral Blood Mononuclear Cell Collection After 

Vaccination

Group
Overall
(n = 50)

7 d
(n = 16)

14d
(n = 17)

28 d
(n = 17)

Age, y

 Range 9–14 9–14 10–14 9–14

 Average 11.8 12.0 11.8 11.5

Sex

 Male 68.0 68.8 58.8 76.5

 Female 32.0 31.2 41.2 23.5

Race

 White 96.0 87.5 100.0 100.0

 Other 4.0 12.5 0.0 0.0

Prior vaccine receipt

 2009–2010 TIV 28.0 25.0 35.3 23.5

 2009–2010 LAIV 10.0 6.3 17.6 5.9

 A(H1N1)pdm09 monovalent 32.0 18.8 23.5 52.9

Data are percentage of subjects, unless otherwise indicated.

Abbreviations: A(H1N1)pdm09, 2009 pandemic influenza A(H1N1); LAIV, live-attenuated vaccine; TIV, trivalent inactivated influenza vaccine.

J Infect Dis. Author manuscript; available in PMC 2017 December 15.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Reber et al. Page 20

Ta
b

le
 2

In
fl

ue
nz

a 
V

ir
us

 V
ac

ci
ne

 S
tr

ai
n–

Sp
ec

if
ic

 H
em

ag
gl

ut
in

at
io

n-
In

hi
bi

tio
n 

(H
I)

 T
ite

rs
 A

m
on

g 
C

hi
ld

re
n 

V
ac

ci
na

te
d 

W
ith

 2
01

0–
20

11
 T

ri
va

le
nt

 I
na

ct
iv

at
ed

 I
nf

lu
en

za
 V

ac
ci

ne
, O

ve
ra

ll 
an

d 
by

 R
ec

ei
pt

 o
f 

20
09

–2
01

0 

Se
as

on
al

 I
nf

lu
en

za
 V

ac
ci

ne

V
ar

ia
bl

e

A
(H

1N
1)

 S
tr

ai
n,

 T
it

er
A

(H
3N

2)
 S

tr
ai

n,
 T

it
er

B
 S

tr
ai

n,
 T

it
er

A
(H

1N
1)

pd
m

09
A

/B
ri

s/
59

A
/P

er
th

/1
6

A
/B

ri
s/

10
B

/B
ri

s/
60

B
/F

lo
r/

4

O
ve

ra
ll

N
o

R
ec

ei
pt

R
ec

ei
pt

O
ve

ra
ll

N
o

R
ec

ei
pt

R
ec

ei
pt

O
ve

ra
ll

N
o

R
ec

ei
pt

R
ec

ei
pt

O
ve

ra
ll

N
o

R
ec

ei
pt

R
ec

ei
pt

O
ve

ra
ll

N
o

R
ec

ei
pt

R
ec

ei
pt

O
ve

ra
ll

N
o

R
ec

ei
pt

R
ec

ei
pt

Fo
ld

-r
is

e 
>

 4

 
28

 d
86

.0
…

…
4.

0
…

…
70

.0
…

…
68

.0
…

…
64

.0
…

…
30

.0
…

…

H
I 

>
 4

0

 
0 

d
68

.0
66

.7
68

.4
42

.0
13

.3
a

84
.2

30
.0

6.
7a

63
.2

64
.0

40
.0

a
10

0.
0

50
.0

30
.0

a
78

.9
60

.0
53

.3
68

.4

 
28

 d
96

.0
96

.7
94

.7
44

.0
20

.0
a

78
.9

84
.0

76
.7

94
.7

94
.0

90
.0

10
0.

0
96

.0
10

0.
0

89
.5

80
.0

83
.3

73
.7

 
7 

m
o

95
.9

96
.7

94
.4

38
.8

16
.7

a
72

.2
73

.5
70

.0
77

.8
85

.7
80

.0
94

.4
91

.8
93

.3
88

.9
63

.3
63

.3
61

.1

H
I 

>
 8

0

 
0 

d
36

.0
30

.0
47

.7
26

.0
6.

7a
52

.6
22

.0
3.

3a
47

.4
50

.0
20

.0
a

94
.7

36
.0

20
.0

b
57

.9
42

.0
30

.0
57

.9

 
28

 d
92

.0
93

.3
89

.5
30

.0
13

.3
b

52
.6

74
.0

66
.7

84
.2

90
.0

83
.3

10
0.

0
88

.0
90

.0
84

.2
70

.0
73

.3
63

.2

 
7 

m
o

87
.8

83
.3

94
.4

22
.4

6.
7b

44
.4

55
.1

56
.7

50
.0

83
.7

76
.7

94
.4

77
.6

80
.0

72
.2

51
.0

50
.0

50
.0

H
I 

>
 1

60

 
0 

d
14

.0
13

.3
15

.8
16

.0
6.

7
26

.3
14

.0
3.

3c
31

.6
38

.0
10

.0
a

78
.9

18
.0

16
.7

21
.1

28
.0

20
.0

42
.1

 
28

 d
86

.0
86

.7
84

.2
16

.0
6.

7
26

.3
66

.0
56

.7
78

.9
84

.0
76

.7
94

.7
70

.0
73

.3
63

.2
52

.0
53

.3
52

.6

 
7 

m
o

67
.3

66
.7

66
.7

14
.3

6.
7

22
.2

40
.8

33
.3

50
.0

67
.3

63
.3

72
.2

38
.8

43
.3

27
.8

36
.7

36
.7

38
.9

T
he

 in
fl

ue
nc

e 
of

 p
ri

or
 s

ea
so

na
l v

ac
ci

na
tio

n 
on

 th
e 

pe
rc

en
ta

ge
 o

f 
su

bj
ec

ts
 w

ith
 H

I 
tit

er
s 

of
 ≥

 4
0,

 8
0,

 a
nd

 1
60

 w
er

e 
as

se
ss

ed
 u

si
ng

 th
e 

Fi
sh

er
 e

xa
ct

 te
st

 f
or

 e
ac

h 
vi

ru
s 

st
ra

in
. 2

00
9 

pa
nd

em
ic

 in
fl

ue
nz

a 
A

(H
1N

1)
 (

A
[H

1N
1]

pd
m

09
),

 A
/P

er
th

/1
6,

 a
nd

 B
/B

ri
s/

60
 w

er
e 

in
cl

ud
ed

 in
 th

e 
20

10
–2

01
1 

T
IV

; A
/B

ri
s/

59
, A

/B
ri

s1
0,

 a
nd

 B
/B

ri
s/

60
 w

er
e 

in
cl

ud
ed

 in
 th

e 
20

09
–2

01
0 

T
IV

; a
nd

 B
/F

lo
r/

4 
w

as
 in

cl
ud

ed
 in

 th
e 

20
08

–2
00

9 
T

IV
.

Si
gn

if
ic

an
ce

 is
 in

di
ca

te
d 

by

J Infect Dis. Author manuscript; available in PMC 2017 December 15.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Reber et al. Page 21
a P 

≤ 
.0

01
 v

s 
re

ci
pi

en
ts

 o
f 

T
IV

 c
on

ta
in

in
g 

th
e 

sp
ec

if
ie

d 
st

ra
in

.

b P 
≤ 

.0
1 

vs
 r

ec
ip

ie
nt

s 
of

 T
IV

 c
on

ta
in

in
g 

th
e 

sp
ec

if
ie

d 
st

ra
in

.

c P 
≤ 

.0
5 

vs
 r

ec
ip

ie
nt

s 
of

 T
IV

 c
on

ta
in

in
g 

th
e 

sp
ec

if
ie

d 
st

ra
in

.

J Infect Dis. Author manuscript; available in PMC 2017 December 15.


	Abstract
	METHODS
	Study Design
	Serological Assays
	T-Cell Responses
	Antibody-Secreting Cells (ASCs)
	Statistical Analysis

	RESULTS
	Serological Responses
	T-Cell Responses
	B-Cell Responses
	Effect of Prior Vaccination on Immune Responses

	DISCUSSION
	References
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Table 1
	Table 2

